

Special Publication 500-287

The Second Static Analysis Tool Exposition
(SATE) 2009

Vadim Okun

Aurelien Delaitre

Paul E. Black

Software and Systems Division
Information Technology Laboratory

National Institute of Standards and Technology
Gaithersburg, MD 20899

June 2010

U.S. Department of Commerce
National Institute of Standards and Technology

NIST SP 500-287 - 2 -

Abstract:

The NIST Software Assurance Metrics And Tool Evaluation (SAMATE) project
conducted the second Static Analysis Tool Exposition (SATE) in 2009 to advance
research in static analysis tools that find security defects in source code. The main
goals of SATE were to enable empirical research based on large test sets,
encourage improvements to tools, and promote broader and more rapid adoption
of tools by objectively demonstrating their use on production software.

Briefly, participating tool makers ran their tool on a set of programs. Researchers
led by NIST performed a partial analysis of tool reports. The results and
experiences were reported at the SATE 2009 Workshop in Arlington, VA, in
November, 2009. The tool reports and analysis were made publicly available in
2010.

This paper describes the SATE procedure and provides our observations based on
the data collected. We improved the procedure based on lessons learned from the
SATE 2008 experience. The changes included random selection of subsets of tool
warnings for analysis and also selection based on human analysis, more detailed
analysis categories and criteria, an enhanced output format that provides a richer
description of weakness paths, and a more detailed and accurate analysis of tool
warnings.

The SATE data suggests that while tools often look for different types of
weaknesses and the number of warnings varies widely by tool, there is a
significant degree of agreement among tools for well-known weakness categories,
such as buffer errors. The data also provides evidence that, while human analysis
is best suited for identifying some types of weaknesses, tools find a significant
portion of weaknesses considered important by human experts.

This paper identifies several ways in which the released data and analysis are
useful. First, the output from running many tools on production software can be
used for empirical research. Second, the analysis of tool reports indicates actual
weaknesses that exist in the software and that are reported by the tools. Finally,
the analysis may also be used as a basis for a further study of the security
weaknesses and of static analysis.

Keywords:
Software security; static analysis tools; security weaknesses; vulnerability

Certain instruments, software, materials, and organizations are identified in this paper to
specify the exposition adequately. Such identification is not intended to imply
recommendation or endorsement by NIST, nor is it intended to imply that the
instruments, software, or materials are necessarily the best available for the purpose.

NIST SP 500-287 - 3 -

Cautions on Interpreting and Using the SATE Data

SATE 2009, as well as its predecessor, SATE 2008, taught us many valuable lessons.
Most importantly, our analysis should NOT be used as a basis for rating or choosing
tools; this was never the goal of SATE.

There is no single metric or set of metrics that is considered by the research community
to indicate or quantify all aspects of tool performance. We caution readers not to apply
unjustified metrics based on the SATE data.

Due to the variety and different nature of security weaknesses, defining clear and
comprehensive analysis criteria is difficult. While the analysis criteria have been
improved since SATE 2008, refinements are necessary and are in progress.

The test data and analysis procedure employed have limitations and might not indicate
how these tools perform in practice. The results may not generalize to other software
because the choice of test cases, as well as the size of test cases, can greatly influence
tool performance. Also, we analyzed a small subset of tool warnings.

The tools were used in this exposition differently from their use in practice. We analyzed
tool warnings for correctness and looked for related warnings from other tools, whereas
developers use tools to determine what changes need to be made to software, and auditors
look for evidence of assurance. Also in practice, users write special rules, suppress false
positives, and write code in certain ways to minimize tool warnings.

We did not consider the user interface, integration with the development environment,
and many other aspects of the tools, which are important for a user to efficiently and
correctly understand a weakness report.

Teams ran their tools against the test sets in late August – early September 2009. The
tools continue to progress rapidly, so some observations from the SATE data may already
be out of date.

Because of the stated limitations, SATE should not be interpreted as a tool testing
exercise. The results should not be used to make conclusions regarding which tools are
best for a particular application or the general benefit of using static analysis tools. In
Section 4 we suggest appropriate uses of the SATE data.

NIST SP 500-287 - 4 -

Table of Contents

1 Introduction ... 6

2 SATE Organization ... 7

2.1 Steps in the SATE procedure... 8

2.2 Test Sets ... 8

2.3 Tools ... 9

2.4 Tool Runs and Submissions ... 9

2.5 Analysis of Tool Reports .. 10

2.5.1 Two Methods for Tool Warning Selection ... 11

2.5.2 Practical Analysis Aids ... 12

2.5.3 Analysis Procedure ... 12

2.5.4 Analysis Criteria ... 13

2.5.5 Reanalysis .. 15

2.6 SATE Data Format ... 16

2.6.1 Tool Output Format ... 16

2.6.2 Evaluated Tool Output Format ... 16

2.6.3 Manual Findings Analysis Format .. 17

2.6.4 Association List Format ... 17

2.7 Summary of changes since SATE 2008 ... 17

3 Data and Observations .. 18

3.1 Warning Categories .. 18

3.2 Test Case and Tool Properties ... 20

3.3 On our Analysis of Tool Warnings .. 23

3.4 Summary of Reanalysis .. 25

3.5 Tool Warnings Related to Manual Findings .. 26

4 Summary and Conclusions ... 26

NIST SP 500-287 - 5 -

5 Future Plans ... 27

6 Acknowledgements .. 27

7 References .. 28

NIST SP 500-287 - 6 -

1 Introduction
SATE 2009 was the second in a series of static analysis tool expositions. It was designed
to advance research in static analysis tools that find security-relevant defects in source
code. Briefly, participating tool makers ran their tool on a set of programs. Researchers
led by NIST performed a partial analysis of test cases and tool reports. The results and
experiences were reported at the SATE 2009 Workshop [19]. The tool reports and
analysis were made publicly available in 2010. SATE had these goals:

• To enable empirical research based on large test sets
• To encourage improvement of tools
• To foster adoption of the tools by objectively demonstrating their use on

production software

Our goal was not to evaluate nor choose the "best" tools.

SATE was aimed at exploring the following characteristics of tools: relevance of
warnings to security, their correctness, and prioritization. We based SATE analysis on the
textual reports produced by tools - not their user interfaces - which limited our ability to
understand the weakness reports.

SATE was focused on static analysis tools that examine source code to detect and report
weaknesses that can lead to security vulnerabilities. Tools that examine other artifacts,
like requirements, and tools that dynamically execute code were not included.

SATE was organized and led by the NIST Software Assurance Metrics And Tool
Evaluation (SAMATE) team [13]. The tool reports were analyzed by a small group of
analysts, consisting of the NIST and MITRE researchers. The supporting infrastructure
for analysis was developed by the NIST researchers. Since the authors of this report were
among the organizers and the analysts, we sometimes use the first person plural (we) to
refer to analyst or organizer actions. Security experts from Cigital performed time-limited
analysis for 2 of the 4 test cases [9].

In this paper, we use the following terminology. A vulnerability is a property of system
security requirements, design, implementation, or operation that could be accidentally
triggered or intentionally exploited and result in a security failure [16]. A vulnerability is
the result of one or more weaknesses in requirements, design, implementation, or
operation. A warning is an issue (usually, a weakness) identified by a tool. A (tool)
report is the output from a single run of a tool on a test case. A tool report consists of
warnings.

We planned SATE 2009 based on our experience from SATE 2008 [18]. In particular, we
found that the tool interface was important in understanding most weaknesses – a simple
format with line numbers and little additional information did not always provide
sufficient context for a user to efficiently and correctly understand a weakness report.
Also, a binary true/false positive verdict on tool warnings did not provide adequate
resolution to communicate the relation of the warning to the underlying weakness.

We also found that the tools’ philosophies about static analysis and reporting were often
very different, so they produced substantially different warnings. This complicated our

NIST SP 500-287 - 7 -

task of analyzing warnings and associating warnings from different tools that refer to the
same weakness. For example, tools reported weaknesses at different granularity levels.
The SATE 2008 experience suggested that the notion that weaknesses occur as distinct,
separate instances is not reasonable in most cases.

A simple weakness can be attributed to one or two specific statements and associated
with a specific Common Weakness Enumeration (CWE) [3] entry. In contrast, a non-
simple weakness has one or more of these properties:

• Associated with more than one CWE (e.g., chains and composites [2]).
• Attributed to many different statements.
• Has intermingled flows.

In [18], we estimated that only between 1/8 and 1/3 of all weaknesses are simple
weaknesses.

The large number of tool warnings and the lack of the ground truth further complicated
the analysis task in SATE 2008. To address this problem, we selected a random subset of
tool warnings and tool warnings related to findings by security experts for analysis.

Researchers have studied static analysis tools and collected test sets. Zheng et. al [22]
analyzed the effectiveness of static analysis tools by looking at test and customer-
reported failures for three large-scale network service software systems. They concluded
that static analysis tools are effective at identifying code-level defects. Also, SATE 2008
found that tools can help find weaknesses in most of the SANS/CWE Top 25 [15]
weakness categories [18].

Several collections of test cases with known security flaws are available [8] [23] [10]
[14]. Several assessments of open-source projects by static analysis tools have been
reported recently [1] [5] [6]. A number of studies have compared different static analysis
tools for finding security defects, e.g., [12] [8] [23] [7] [11] [4]. SATE was different in
that many teams ran their own tools on a set of open source programs. Also, the objective
of SATE was to accumulate test data, not to compare tools.

The rest of the paper is organized as follows. Section 2 describes the SATE 2009
procedure and summarizes the changes from SATE 2008. Since we made a few changes
and clarifications to the SATE procedure after it started (adjusting the deadlines,
clarifying the requirements, and adding the reanalysis step), Section 2 describes the
procedure in its final form. Section 3 gives our observations based on the data collected
and a summary of the reanalysis results. Section 4 summarizes conclusions and Section 5
lists some future plans.

2 SATE Organization
The exposition had two language tracks: C track and Java track. At the time of
registration, teams specified which track(s) they wished to enter. We performed separate
analysis and reporting for each track. Also at the time of registration, teams specified the
version of the tool that they intended to run on the test set(s). We required teams to use a
version of the tool having a release or build date that was earlier than the date when they
received the test set(s).

NIST SP 500-287 - 8 -

2.1 Steps in the SATE procedure

The following summarizes the steps in the SATE procedure. Deadlines are given in
parentheses.

• Step 1 Prepare
o Step 1a Organizers choose test sets
o Step 1b Teams sign up to participate (by 14 Aug 2009)

• Step 2 Organizers provide test sets via SATE web site (19 Aug 2009)
• Step 3 Teams run their tool on the test set(s) and return their report(s) (by 4 Sep

2009)
• Step 4 Organizers analyze the reports, provide the analysis to the teams

(preliminary analysis by 16 Oct 2009, updated analysis by 23 Oct 2009)
o Organizers select a subset of tool warnings for analysis and share with the

teams (by 25 Sep 2009)
o (Optional) Teams return their review of the selected warnings from their

tool's reports (by 6 Oct 2009)
• Step 5 Report comparisons at SATE 2009 workshop [19] (6 Nov 2009)
• Step 6 Organizers reanalyze the warnings that were analyzed previously, provide

the updated analysis to the teams (Not planned prior to the exposition, done by
April 23 2009)

• Step 7 Publish results (Originally planned for Feb - May 2010, but delayed until
June 2010)

2.2 Test Sets

We list the test cases we selected, along with some statistics for each test case, in Table 1.
The last two columns give the number of files and the number of non-blank, non-
comment lines of code (LOC) for the test cases. The counts for C test cases include
source (.c) and header (.h) files. The counts for the Java test cases include Java (.java)
and JSP (.jsp) files. The counts do not include source files of other types: make files,
shell scripts, Perl, PHP, and SQL. The lines of code were counted using SLOCCount by
David A. Wheeler [21].

Test case Track Description Version # Files # LOC
IRSSI C IRC client 0.8.14 347 52,803
PVM3 C Parallel virtual machine 3.4 320 72,032
Roller Java Weblog server 4.0.1 1057 64,888
DMDirc Java IRC client 0.6.3m1 926 63,333

Table 1 Test cases

The links to the test case developer web sites, as well as links to download the versions
analyzed, are available at the SATE web page [17].

We spent about 3 weeks selecting the test cases and considered dozens of candidates. In
particular, we looked for test cases with various security defects, over 10k lines of code,
compilable using a commonly available compiler, etc.

NIST SP 500-287 - 9 -

2.3 Tools

Table 2 lists, alphabetically, the participating tools and the tracks in which the tools were
applied. One of the teams, Veracode, performed a human review of its reports to remove
anomalies such as high false positives in a particular weakness category.

2.4 Tool Runs and Submissions

Teams ran their tools and submitted reports following specified conditions.

• Teams did not modify the code of the test cases.
• For each test case, teams did one or more runs and submitted the report(s). See

below for more details.
• Except for Veracode, the teams did not do any hand editing of tool reports.

Veracode performed a human quality review of its reports to remove anomalies
such as high false positives in a particular weakness category. This quality review
did not add any results.

• Teams converted the reports to a common XML format. See Section 2.6.1 for
description of the format.

• Teams specified the environment (including the operating system and version of
compiler) in which they ran the tool. These details can be found in the SATE tool
reports available at [17].

Tool Version Tracks
Armorize CodeSecure 3.5.9 Java
Checkmarx CxSuite 2.7.5.0 Java
Coverity Prevent 4.5.0 C
Grammatech CodeSonar 3.4p0 C
Klocwork Insight1 8.2 C, Java
LDRA Testbed 8.1.0 C
SofCheck Inspector for Java 2.17250, 2.184792 Java
Veracode SecurityReview3 As of 08/31/2009 C, Java

Table 2 Tools

Most teams submitted one tool report per test case for the track(s) that they participated
in. Klocwork analyzed one test case per track: PVM3 and DMDirc.

Klocwork submitted two runs for DMDirc: the first run used the default settings, while
the second run used custom settings. In the custom run, two checkers were turned off and
two checkers were tuned to suppress some warnings. We analyzed the output from the
second run only. The tuning details were included in their submission and are available as
part of the released data.

In all, we analyzed the output from 18 tool runs: 4 from Veracode (participated in 2
tracks) and 2 each from the other 7 tools.

1 Analyzed PVM3 and DMDirc
2 SofCheck Inspector build version 17250 was used for DMDirc, build version 18479 – for Roller
3 A service

NIST SP 500-287 - 10 -

Several teams also submitted the original reports from their tools, in addition to the
reports in the SATE output format. During our analysis, we used some of the
information, such as details of weakness paths, from some of the original reports to better
understand the warnings.

Several tools (Grammatech CodeSonar, Coverity Prevent, and LDRA Testbed) did not
assign severity to the warnings. For example, Grammatech CodeSonar uses rank (a
combination of severity and likelihood) instead of severity. All warnings in their
submitted reports had severity 1. We changed the severity field for some warning classes
in the CodeSonar, Prevent, and Testbed reports based on the weakness names and some
additional information from the tools.

In the Grammatech CodeSonar report for IRSSI, 6 of 8 buffer overrun warnings appeared
due to a tool configuration error: the analysis was done by a compiler configured for 64
bits, but with models configured for 32 bits. We analyzed the warnings from this run.
Later, Grammatech submitted the updated run with the tool configured correctly. The
updated run is available as part of the released data.

2.5 Analysis of Tool Reports

Finding all weaknesses in a reasonably large program is impractical. Also, due to the high
number of tool warnings, analyzing all warnings may be impractical. Therefore, we
selected subsets of tool warnings for analysis.

Figure 1 describes the high-level view of our analysis procedure. We used two
complementary methods to select tool warnings. In the first method, we randomly
selected a subset of warnings from each tool report. In the second method, we selected
tool warnings related to manually identified weaknesses. We performed separate analysis
and reporting for the two resulting subsets of warnings.

Figure 1 Analysis procedure overview

Tool
reports

Select
randomly

Method 1

Related to
manual
findings

Method 2

Analyze
warnings for

correctness and
associate

Analyze
data

Selected
warnings

NIST SP 500-287 - 11 -

For selected tool warnings, we analyzed the following characteristics. First, we associated
(grouped together) warnings that refer to the same (or related) weakness. (See Section 3.4
of [18] for a discussion of what constitutes a weakness.) Second, we analyzed correctness
of the warnings. Also, we included our comments about warnings.

2.5.1 Two Methods for Tool Warning Selection

This section describes two methods that we used to select tool warnings for analysis.

Method 1 – Select a subset of tool warnings

We selected 30 warnings from each tool report (except one report, which had only 11
warnings) using the following procedure. Here, a warning class is identified by a
(weakness name, severity) pair, e.g., (Buffer Underrun, 1).

• Randomly selected one warning from each warning class with severities 1
through 4.

• While more warnings were needed, repeated:

o Randomly selected 3 of the remaining warnings (or all remaining
warnings if there were less than 3 left) from each warning class with
severity 1,

o Randomly selected 2 of the remaining warnings (or all remaining
warnings if there were less than 2 left) from each warning class with
severity 2,

o Randomly selected 1 of the remaining warnings from each warning class
(if it still had any warnings left) with severity 3.

• If more warnings were still needed, selected warnings from warning class with
severity 4, then selected warnings from warning class with severity 5.

If a tool did not assign severity, we assigned severity based on weakness names and our
understanding of their relevance to security.

We analyzed correctness of the selected warnings and also found associated warnings
from other tools.

Method 2 – Select tool warnings related to manually identified weaknesses

In this method, security experts manually analyzed one C and one Java test case and
identified the most important weaknesses (manual findings). The time-limited human
analysis identified both design weaknesses and source code weaknesses focusing on the
latter. The human analysis combined multiple weaknesses with the same root cause.
Rapid threat modeling was used to guide specific testing activities, including automated
analysis, code review, penetration testing, and fuzzing. Tools were used to aid human
analysis, but tools were not the main source of manual findings. The methodology of
human analysis used is presented in [9]. Due to the limited resources (about 1.5 person-
weeks), security experts analyzed two of the four test cases, IRSSI and Roller.

We checked the tool reports to find warnings related to the manual findings. For each
manual finding, for each tool, we found at least one related warning, or concluded that
there were no related warnings.

NIST SP 500-287 - 12 -

2.5.2 Practical Analysis Aids

To simplify querying of tool reports, we imported all reports into a relational database
designed for this purpose.

To support human analysis of warnings, we developed a web interface which allows
searching the warnings based on different search criteria, viewing individual warnings,
marking a warning with human analysis which includes opinion of correctness and
comments, studying relevant source code files, associating warnings that refer to the
same (or related) weakness, etc.

2.5.3 Analysis Procedure

This section focuses on the procedure for analysis of warnings selected using Method 1.
First, an analyst searched for warnings to analyze (from the list of selected warnings). We
analyzed some warnings that were not selected, either because they were associated with
selected warnings or because we found them interesting. An analyst usually concentrated
his (or her) efforts on a specific test case, since the knowledge of the test case that he
gained enabled him to analyze other warnings for the same test case faster. Similarly, an
analyst often concentrated textually, e.g., choosing warnings near by in the same source
file. An analyst also tended to concentrate on warnings of the same type.

After choosing a particular warning, the analyst studied the relevant parts of the source
code. If he formed an opinion, he marked correctness and/or added comments. If he was
unsure about an interesting case, he may have investigated further by, for instance,
extracting relevant code into a simple example and/or executing the code. Then the
analyst proceeded to the next warning.

Below are two common scenarios for an analyst’s work.

Search → View list of warnings → Choose a warning to work on → View source code of
the file → Return to the warning → Submit an evaluation

Search → View list of warnings → Choose a warning to work on → Associate the
warning with another warning

Sometimes, an analyst may have returned to a warning that had already been analyzed,
either because he changed his opinion after analyzing similar warnings or for other
reasons. Also, to improve consistency, the analysts had a series of communications about
application of the analysis criteria to some weakness classes and weakness instances.

To save time, we used heuristics to partially automate the analysis of some similar
warnings. For example, when we determined that a particular source file is executed
during installation only, we downgraded severity of certain warning types referring to
that source file.

Review by teams

We used feedback from teams to improve our analysis. In particular, we asked teams to
review the selected tool warnings from their tool reports and provide their findings
(optional step in Section 2.1). Several teams submitted a review of their tool’s warnings.

NIST SP 500-287 - 13 -

Additionally, several teams presented a review of our analysis at the SATE 2009
workshop.

2.5.4 Analysis Criteria

This section describes the criteria that we used for associating warnings that refer to the
same weakness and also for marking correctness of the warnings.

Correctness categories

We assigned one of the following categories to each warning analyzed.

• True weakness
• True but insignificant weakness

o Examples: database tainted during configuration or a warning that
describes properties of a standard library function without regard to its use
in the code.

• Weakness status unknown - unable to determine correctness
• Not a weakness - an invalid conclusion about the code

In the above categories, there are two distinct and independent dimensions: correctness
and significance for security.

Criteria for correctness and significance marking

In our analysis of correctness we assumed that:

• A tool has (or should have) perfect knowledge of control/data flow that is
explicitly in the code.

o If a tool reports a weakness on an infeasible path, mark it as false (not a
weakness).

o If a tool reports a weakness that is not present, mark it as false. For
example, if a tool reports an error caused by unfiltered input, but in fact
the input is filtered correctly, mark it as false.

o If the input is filtered, but the filtering is not complete, mark it as true.
This is often the case for cross-site scripting weaknesses.

o If a warning says that a function can be called with a bad parameter, but in
the test case it is always called with safe values, mark the warning as false.

• A tool does not know about context or environment and may assume the worst
case.

o For example, if a tool reports a weakness that is caused by unfiltered input
from command line or from local files, mark it as true (but it may be
insignificant - see below). The reason is that the test cases are general
purpose software, and we did not provide any environmental information
to the teams.

In the analysis of significance of a warning, we considered its possible effects on security
(integrity, confidentiality, availability). We marked a warning as true but insignificant in
these cases:

NIST SP 500-287 - 14 -

• A warning describes properties of a function (e.g., standard library function)
without regard to its use in the code.

• A warning describes a property that may only lead to a security problem in
unlikely and local (not caused by an external person) cases.

o For example, a warning about unfiltered input from a command that is run
only by an administrator during installation is likely insignificant.

o If a warning about coding inconsistencies does not indicate a deeper
problem, then it is insignificant.

Criteria for warning association

Tool warnings may refer to the same (or related) weakness. (The notion of distinct
weaknesses may be unrealistic. See Section 3.4 of [18] for a discussion.) In this case, we
associated them. In contrast to SATE 2008, where any analysis for one warning applied
to every associated warning, in SATE 2009, each warning could have a separate analysis.

For each selected warning instance, our goal was to find at least one related warning
instance (if it exists) from each of the other tools. While there may be many warnings
reported by a tool that are related to a particular warning, we did not attempt to find all of
them.

We used the following degrees of association:

• Equivalent – weakness names are the same or semantically similar; locations are
the same, or in case of paths, the source and the sink are the same and the
variables affected are the same.

• Strongly related – the paths are similar, where the sinks or sources are the same
conceptually, e.g., one tool may report a shorter path than another tool.

• Weakly related – warnings refer to different parts of a chain or composite;
weakness names are different but related in some ways, e.g., one weakness may
lead to the other, even if there is no clear chain; the paths are different but have a
filter location or another important attribute in common.

The following criteria apply to weaknesses that can be described using source-to-sink
paths. A source is where user input can enter a program. A sink is where the input is
used.

• If two warnings have the same sink, but the sources are two different variables,
mark them as weakly related.

• If two warnings have the same source and sink, but paths are different, mark them
as strongly related. However, if the paths involve different filters, mark them as
weakly related.

• If one warning contains only the sink, and the other contains a path, the two
warnings refer to the same sink and use a similar weakness name,

o If there is no ambiguity as to which variable they refer to (and they refer to
the same variable), mark them as strongly related.

NIST SP 500-287 - 15 -

o If there are two or more variables affected and there is no way of knowing
which variable the warnings refer to, mark them as weakly related.

Criteria for matching warnings related to manual findings

Matching tool warnings to the manual findings is often different from matching tool
warnings from different tools because the tool warnings may be at a different – lower –
level than the manual findings.

We marked tool warnings related to manual findings with one or more of the following
labels:

• Same instance

• Same instance, different perspective

• Same instance, different paths

o Example: different paths, e.g., different sources, but the same sink

• Coincidental – tool reports a lower level weakness that may point the user to the
high level weakness

• Other instance – tool reports a similar weakness (the same weakness type)
elsewhere in the code

Due to the possibility of a large number of tool warnings related to a manual finding, we
did not attempt to find all associated tool warnings for each manual finding.

2.5.5 Reanalysis

After completion of the SATE 2009 workshop, we reanalyzed all SATE warnings that
were analyzed previously (as in the original analysis, we focused on the 521 selected
warnings).

Our goals were to (1) improve the analysis quality, (2) identify the areas of the analysis
criteria that need improvement, and (3) better understand the types and frequency of
errors that we made during the original analysis. We watched for cases where we made a
mistake in marking correctness of a warning and where we did not associate a warning
with other warnings that refer to the same weakness (we focused on association of
warnings from different tools). We used the same analysis criteria as during the original
analysis.

The data and observations presented in this paper, unless otherwise specified, include the
changes from reanalysis.

NIST SP 500-287 - 16 -

2.6 SATE Data Format

Teams converted their tool output to the common SATE XML format. Section 2.6.1
describes this tool output format. Section 2.6.2 describes the extension of the SATE
format for storing our analysis of the warnings. Section 2.6.3 describes the extension of
the SATE format for our analysis of which tool warnings are related to the manual
findings. Section 2.6.4 describes the format for storing the lists of associations of
warnings.

2.6.1 Tool Output Format

In devising the tool output format, we tried to capture aspects reported textually by most
tools. In the SATE tool output format, each warning includes:

• Id - a simple counter.
• (Optional) tool specific id.
• One or more paths with one or more locations each, where each location has:

o (Optional) id – path id. If a tool produces several paths for a weakness, id
can be used to differentiate between them.

o Line - line number.
o Path - pathname.
o (Optional) fragment - a relevant source code fragment at the location.
o (Optional) explanation - why the location is relevant or what variable is

affected.
• Name (class) of the weakness, e.g., buffer overflow.
• (Optional) CWE id, where applicable.
• Weakness grade (assigned by the tool):

o Severity on the scale 1 to 5, with 1 - the highest.
o (Optional) probability that the problem is a true positive, from 0 to 1.
o (Optional) tool_specific_rank - tool specific metric – useful if a tool does

not use severity and probability.
• Output - original message from the tool about the weakness, either in plain text,

HTML, or XML.
• (Optional) An evaluation of the issue by a human; not considered to be part of

tool output. Note that each of the following fields is optional.
o Correctness - human analysis of the weakness, one of four categories

listed in Section 2.5.4.
o Comments.

The XML schema file for the tool output format is available at the SATE web page [17].

2.6.2 Evaluated Tool Output Format

The evaluated tool output format, including our analysis of tool warnings, has other fields
in addition to the tool output format above. Specifically, each warning includes:

• UID – another id, unique across all tool reports.
• Selected – “yes” means that we selected the warning for analysis.

NIST SP 500-287 - 17 -

2.6.3 Manual Findings Analysis Format

The format for analysis of manual findings extends the tool output format with the
following:

• Related – one or more tool warnings related to a manual finding:
o UID – unique warning id
o Summary – one or more of “same instance,” “same instance, different

perspective,” “same instance, different paths,” “coincidental,” or “other
instance”

o Tool – the name of the tool that reported the warning
o Comment – our description of how this warning is related to the manual

finding.

2.6.4 Association List Format

The association list consists of associations - pairs of associated warnings identified by
unique warning ids (UID). Each association also includes:

• Degree of association – equivalent, strongly related or weakly related.
• (Optional) comment.

There is one association list per test case.

2.7 Summary of changes since SATE 2008

Based on our experience conducting SATE 2008, we made the following changes to the
SATE procedure.

First, we improved the procedure for selecting tool warnings for analysis. For method 1,
we randomly selected a subset of warnings from each tool report. This selection method
is useful to the tool users because it considers warnings from each tool. For method 2, we
selected warnings related to findings by security experts. This selection method is useful
to the tool users because it is largely independent of tools and thus includes weaknesses
that may not be found by any tools. It also focused analysis on weaknesses found most
important by security experts.

Second, based on analysis of SATE 2008 tool warnings, we realized that a binary
true/false positive verdict on tool warnings is not enough. Instead, we used 4 correctness
categories in SATE 2009. They are true, true but insignificant, false, and unknown.

Third, we added more details to the analysis criteria and modified the association criteria.
In particular, since the notion of a distinct weakness is often unrealistic, we associated
pairs of warnings instead of larger sets. Also, we allowed for two associated warnings to
have a different correctness evaluation.

Fourth, we improved the SATE output format. In particular, we added a richer
description of weakness paths. The SATE 2009 output format is backward compatible
with the SATE 2008 format.

Finally, to provide more useful feedback to the developers, we selected the latest, beta
versions of test cases. Other changes include selecting 2 instead of 3 test cases per track
and performing a full reanalysis after completion of the SATE 2009 workshop.

NIST SP 500-287 - 18 -

3 Data and Observations
This section describes our observations based on our analysis of the data collected.

3.1 Warning Categories

The tool reports contain 83 different valid CWE ids. In addition, there are 81 weakness
names for warnings that do not have a valid CWE id. In all, there are 221 different
weakness names. This exceeds 83+81 since tools sometimes use different weakness
names for the same CWE id. In order to simplify the presentation of data in this report,
we placed warnings into categories based on the CWE id and the weakness name, as
assigned by tools.

Table 3 describes the weakness categories. The detailed list is part of the released data
available at the SATE web page [17]. Some categories are individual weakness classes
such as XSS; others are broad groups of weaknesses. We included categories based on
their prevalence and severity.

Name Abbre-
viation

Description Example types of
weaknesses

Cross-site
scripting
(XSS)

xss The software does not sufficiently validate,
filter, escape, and encode user-controllable
input before it is placed in output that is used
as a web page that is served to other users.

Reflected XSS,
stored XSS

Buffer errors buf Buffer overflows (reading or writing data
beyond the bounds of allocated memory) and
use of functions that lead to buffer overflows

Buffer overflow and
underflow,
unchecked array
indexing, improper
null termination

Numeric
errors

num-err Improper calculation or conversion of
numbers

Integer overflow,
incorrect numeric
conversion, divide by
zero

Command
injection

cmd-inj The software fails to adequately filter
command (control plane) syntax from user-
controlled input (data plane) and then allows
potentially injected commands to execute
within its context.

OS command
injection

Cross-site
request
forgery
(CSRF)

csrf The web application does not, or cannot,
sufficiently verify whether a well-formed, valid,
consistent request was intentionally provided
by the user who submitted the request.

Race
condition

race The code requires that certain state not be
modified between two operations, but a timing
window exists in which the state can be
modified by an unexpected actor or process.

File system race
condition

Information
leak

info-leak The intentional or unintentional disclosure of
information to an actor that is not explicitly
authorized to have access to that information

Verbose error
reporting, system
information leak

NIST SP 500-287 - 19 -

Name Abbre-
viation

Description Example types of
weaknesses

Broad categories
Improper
input
validation

input-val Absent or incorrect protection mechanism that
fails to properly validate input

Log forging, HTTP
response splitting,
resource injection,
file injection, path
manipulation,
uncontrolled format
string

Security
features

sec-feat Security features, such as authentication,
access control, confidentiality, cryptography,
and privilege management

Hard-coded
password, insecure
randomness, least
privilege violation

Improper
error
handling

err-handl An application does not properly handle
errors that occur during processing

Incomplete, missing
error handling,
missing check
against null

Insufficient
encapsula-
tion

encaps The software does not sufficiently
encapsulate critical data or functionality

Trust boundary
violation, leftover
debug code

API abuse api-
abuse

The software uses an API in a manner
contrary to its intended use

Heap inspection, use
of inherently
dangerous function

Time and
state

time-
state

Improper management of time and state in an
environment that supports simultaneous or
near-simultaneous computation by multiple
systems, processes, or threads

Concurrency weak-
nesses, session
management
problems

Quality
problems

quality Features that indicate that the software has
not been carefully developed or maintained

Null pointer dere-
ference, dead code,
uninitialized variable,
resource manage-
ment problems, incl.
denial of service due
to unreleased re-
sources, use after
free, double unlock,
memory leak,
potential violation of
coding standards

Uncatego-
rized

uncateg Other issues that we could not easily assign
to any category

Table 3 Weakness categories

The categories are similar to those used for SATE 2008. The differences from SATE
2008 are due to a different set of tools used and to differences in the test cases. In
particular, there is no separate category for SQL injection in SATE 2009, since there was
only one SQL injection warning reported (marked as insignificant). SQL injection is
included as part of the broader Improper input validation category. Also, several
weakness types concerned with potential violation of coding standards are included in the
broad Quality problems category, not in a more specific category such as Numeric errors.

NIST SP 500-287 - 20 -

The categories are derived from [3], [20], and other taxonomies. We designed this list
specifically for presenting the SATE data only and do not consider it to be a generally
applicable classification. We use abbreviations of weakness category names (the second
column of Table 3) in Sections 3.2 and 3.3.

Some weakness categories in Table 3 are subcategories of other, broader, categories. In
particular, Cross-site scripting (XSS) and Command injection are kinds of improper input
validation. Also, Race condition is a kind of Time and state weakness category. Due to
their prevalence, we decided to use separate categories for these weaknesses.

When a weakness type had properties of more than one weakness category, we tried to
assign it to the most closely related category.

3.2 Test Case and Tool Properties

In this section, we present the division of tool warnings by test case and by severity, the
number of tool warnings per report, the division of reported tool warnings by weakness
category, and the division of true significant weaknesses by weakness category and by
number of tools that reported them.

6275

5245

5468

2299

IRSSI

PVM3

Roller

DMDirc

Figure 2 Warnings by test case (total 19287)

Figure 2 presents the numbers of tool warnings by test case. Since LDRA Testbed reports
contained a very large number of warnings, we did not include two of the most numerous
warnings categories – “Function call with no prior declaration” (7908 warnings) and
“Procedure call has no prototype and no defn” (11242 warnings). The numbers in Figure
2 and elsewhere reflect this change.

Figure 3 presents the numbers of tool warnings by severity as determined by the tool.
Several tools (Grammatech CodeSonar, Coverity Prevent, and LDRA Testbed) did not
assign severity to the warnings. For example, Grammatech CodeSonar uses rank (a
combination of severity and likelihood) instead of severity. All warnings in their
submitted reports had severity 1. We changed the severity field for some warning classes
in the CodeSonar, Prevent, and Testbed reports based on the weakness names, some
additional information from the tools. The numbers in Figure 3 and elsewhere in the
report reflect this change.

NIST SP 500-287 - 21 -

472

1784

4683

5821

6527

1

2

3

4

5

Figure 3 Warnings by severity (total 19287)

Table 4 presents, for each test case, the number of tool warnings per 1,000 lines of non-
blank, non-comment code (KLOC) in a report with the most warnings (high), a report
with the least warnings (low), and the median number. The number of warnings varies
widely by tool, since tools report different kinds of warnings.

 IRSSI PVM3 Roller DMDirc
Low 0.21 1.17 4.55 0.74
High 71.64 33.69 64 12.62
Median 23.5 8.94 7.86 6.78

Table 4 Low, high, and median number of tool warnings per KLOC

For comparison, Table 5 presents the same number as Table 4 for the reports in SATE
2008. The tables are not directly comparable, because not all tools were run in both
SATE 2008 and SATE 2009. In calculating the numbers in Table 5, we omitted the
reports from one of the teams, Aspect Security, which did a manual review.

 Naim Nagios Lighttpd OpenNMS MvnForum DSpace
Low 4.83 6.14 2.22 1.81 0.21 0.67
High 37.05 45.72 74.69 80.81 28.92 57.18
Median 16.72 23.66 12.27 8.31 6.44 7.31

Table 5 Low, high, and median number of tool warnings per KLOC for reports in SATE 2008

Table 6 presents the numbers of reported tool warnings by weakness category for the C
and Java tracks, as well as for individual test cases. The weakness categories are
described in Table 3.

For the C track, there were no xss, csrf, info-leak, and encaps warnings, mostly because
the C test cases are not web applications. Also, since it is uncommon to write web
applications in C, the tools tend not to look for web application vulnerabilities in the C
code. For the Java track, there were no buf warnings - most buffer errors are not possible
in Java.

Figure 6 in Section 3.3 shows warnings selected for analysis by weakness category. Table
7 presents the numbers of true significant weaknesses, as determined by the analysts, by
weakness category for the C and Java tracks, as well as for individual test cases. This
counts weaknesses, not individual warnings referring to the weaknesses.

NIST SP 500-287 - 22 -

Weakness
category

C track Java track
All C IRSSI PVM3 All Java Roller DMDirc

xss 0 0 0 59 58 1
buf 182 10 172 0 0 0
num-err 53 22 31 195 59 136
cmd-inj 1 0 1 8 0 8
csrf 0 0 0 106 106 0
race 14 12 2 10 2 8
info-leak 0 0 0 175 150 25
input-val 24 0 24 695 556 139
sec-feat 6 6 0 55 37 18
quality 6545 3486 3059 3119 2212 907
err-handl 84 30 54 2385 1703 682
encaps 0 0 0 295 205 90
api-abuse 2072 2072 0 17 16 1
time-state 1 1 0 160 144 16
uncateg 2538 636 1902 488 220 268

Total 11520 6275 5245 7767 5468 2299

Table 6 Reported warnings by weakness category

Of the 13 input-val weaknesses in Roller, 6 were HTTP response splitting weaknesses.
Some tools referred to these weaknesses as XSS, which can indeed be a consequence of
HTTP response splitting. In Table 7, these weaknesses are in the input-val category. One
weakness in DMDirc was incorrectly marked by tool as an instance of XSS. We assigned
it to input-val category instead.

Weakness
category

C track Java track
All C IRSSI PVM3 All Java Roller DMDirc

xss 0 0 0 7 7 0
buf 22 0 22 0 0 0
num-err 2 2 0 3 2 1
cmd-inj 0 0 0 0 0 0
csrf 0 0 0 2 2 0
race 2 2 0 1 1 0
info-leak 0 0 0 8 4 4
input-val 2 0 2 14 13 1
sec-feat 2 2 0 4 1 3
quality 16 8 8 8 2 6
err-handl 8 8 0 0 0 0
encaps 0 0 0 1 1 0
api-abuse 0 0 0 0 0 0
time-state 0 0 0 3 1 2
uncateg 0 0 0 0 0 0

Total 54 22 32 51 34 17

Table 7 True significant weaknesses by weakness category

Table 7 shows that tools are capable of finding weaknesses in a variety of categories.
These include not just resource management, XSS and other input validation problems,

NIST SP 500-287 - 23 -

but also some classes of authentication errors (e.g., hard-coded password, insecure
randomness) and information disclosure problems.

Figure 4 presents, for all weakness categories, for buf category, and for all categories
except buf, the percentage of true weaknesses that were reported by 1, 2, 3, or 4 of the
tools. It also gives, on the bars, the numbers of true weaknesses reported by different
numbers of tools. True buf weaknesses were found only in PVM3. Only one true
weakness was reported by 4 tools. For reference, 4 tools were run on IRSSI and Roller, 5
tools were run on PVM3 and DMDirc.

As Figure 4 shows, tools find different weaknesses. If the figure were not restricted to
true significant weaknesses only, it would show even less overlap between tool results.
This is partly due to the fact that tools often look for different weakness types. However,
there is more overlap for some well known and well studied categories, such as buf.

45

4

41

12

31

16

5

11

1

43 1

0% 25% 50% 75% 100%

All

buf

Not buf

1 tool 2 tools 3 tools 4 tools

Figure 4 True significant weaknesses, by number of tools that reported them

Overall, tools handled the code well, which is not an easy task for test cases of this size.

3.3 On our Analysis of Tool Warnings

We randomly selected 521 warnings for analysis. It is about 2.7% of the total number of
warnings (19287). We also analyzed some other warnings. In all, we analyzed (associated
or marked correctness of) 778 warnings, about 4% of the total. In this section, we present
data on what portions of test cases and weakness categories were selected for analysis.
We also briefly describe the effort that we spent on the analysis.

0% 10% 20% 30% 40%

1

2

3

4

5

% warnings selected for analysis

Figure 5 Warnings selected for analysis, by severity

NIST SP 500-287 - 24 -

Our selection procedure ensured that we analyzed warnings from each warning class for
severities 1 through 4. However, for many warning classes we selected for analysis only a
small subset of warnings. Figure 5 presents, by severity, the percentage of warnings
selected for analysis. Note that this does not consider all warnings that were analyzed,
just those selected for analysis.

Figure 6 presents, by weakness category and for all categories, the percentage of
warnings that were selected for analysis. It also gives, on the bars, the numbers of
warnings that were selected/not selected. We use abbreviations of weakness category
names from Table 3. As the figure shows, we analyzed a relatively large portion of xss,
buf, cmd-inj, race and sec-feat categories. These are among the most common categories
of weaknesses. We were able to analyze all cmd-inj warnings because there were only 9.

Eight people analyzed the tool warnings (spending anywhere from a few hours to a few
weeks). All analysts were competent software engineers with knowledge of security;
however, most of the analysts were only casual users of static analysis tools.

22

67

35

9

6

16

22

69

36

159

42

4

4

9

21

37

213

0

100

8

153

650

25

9505

2427

291

2085

152

3005

115

0% 25% 50% 75% 100%

xss

buf

num-err

cmd-inj

csrf

race

info-leak

input-val

sec-feat

quality

err-handl

encaps

api-abuse

time-state

uncateg

Selected Not selected

Figure 6 Warnings selected for analysis, by weakness category

The SATE analysis interface recorded when an analyst chose to view a warning and
when he submitted an evaluation for a warning. According to these records, the analysis
time for an individual warning ranged from less than 1 minute to well over 30 minutes. In
particular, analysis of significance was very time consuming, while association of

NIST SP 500-287 - 25 -

warnings did not take too long and was partially automated based on weakness name and
path information.

We did not have a controlled environment for the analysis phase, so these numbers are
approximate and may not reflect the actual time the analysts spent. Also, these numbers
are not indicative of the time tool users can be expected to spend, because we used the
tools differently and had different goals in our analysis.

3.4 Summary of Reanalysis

After completion of the SATE 2009 workshop, we reanalyzed all SATE warnings that
were analyzed previously (as in the original analysis, we focused on the 521 selected
warnings).

The main data findings are:

1. We changed our analysis of correctness for 131 of 521 selected warnings (25%).
Table 8 presents the numbers of warnings for which we changed our analysis of
correctness, by type of change. The diagonal contains the numbers of warnings
for which we did not change our analysis. In a few cases, we made multiple
changes because we did not apply the criteria correctly during the original
analysis or because of a change in the assumptions about the test case
environment.

To
From

True Insignificant False Unknown

True 114 36 9 2
Insignificant 22 128 16 3
False 3 26 120 5
Unknown 1 2 6 28

Table 8 Numbers of warnings with change in analysis, by type of change

2. In the original analysis, there were 259 associations between pairs of related
warnings. During reanalysis, we added 104 associations, removed 7 associations,
and changed the degree of association in 6 cases. One of the goals of analysis was
to find, for each selected warning, associated warnings from other tools. In the
original analysis, there were 151 associations between warnings from different
tools, where at least one warning was selected for analysis. After reanalysis, there
were 211 such associations, a 40% increase.

Other significant observations include:

1. The quality of our analysis was uneven across different test cases. In particular,
for DMDirc, we changed our analysis of correctness for 66 of 150 selected
warnings (44%) - much higher than average error rate.

2. We found further evidence that analysis criteria need to be improved and the list
of correctness categories needs to be modified. In particular, it is often hard to
determine significance of a true warning. We found that the criteria for
associating warnings are easier to apply than the criteria for analysis of
correctness.

NIST SP 500-287 - 26 -

3.5 Tool Warnings Related to Manual Findings

The security experts found 10 weaknesses for Roller and 3 for IRSSI. The description of
the manual findings, as well as our listing of the related instances, is available at [17].
The human analysis combined multiple weaknesses with the same root cause. Due to this
and to a limited time allotted to it, the number of manual findings was small.

Figure 7 presents the numbers of manual findings for which at least one tool identified
the same or other similar instance, at least one tool produced a coincidental warning or no
tool produced a related warning. Overall, tools produced related warnings for 5 of 10
manual findings for Roller and for 2 of 3 manual findings for IRSSI.

4

1 1

5

1

1Roller

IRSSI

Same or other Coincidental None

Figure 7 Related warnings from tools

The following briefly describes the manual findings which had coincidental tool
warnings. Security experts found the use of weak CAPTCHA in Roller. Coincidentally, 2
tools reported weak random number generation that is used for generating the CAPTCHA
challenge. While strength or random number generation is not important here, the tool
warnings may point user to the higher level problem. Similarly, security experts reported
the use of a small space of random values for an authentication token (an integer modulo
64) for IRSSI. Coincidentally, 2 tools reported poor entropy of the pseudo-random
number generator used to generate the authentication token.

2 of the 5 manual findings for Roller that had no related tool warnings were access
control weaknesses, where a user is authenticated, but no authorization checks are
performed, so a user with no administrator rights to a weblog can perform actions that
only an administrator should be allowed to do. Such issues are very hard to identify by
automated analysis.

For all but one manual finding that had at least one related tool warning, there were 2 or 3
tools (out of 4 tools that were run for each of the two test cases) that reported the related
warnings.

4 Summary and Conclusions
We conducted the Static Analysis Tool Exposition (SATE) 2009 to enable empirical
research on large data sets and encourage improvement and adoption of tools. Based on
our observations from SATE 2008, we improved the SATE procedure, including
selection of warnings for analysis, analysis criteria, and the output format.

Teams ran their tools on 4 test cases - open source programs from 53k to 72k non-blank
non-comment lines of code. Eight teams returned 18 tool reports with a total of 19,287

NIST SP 500-287 - 27 -

tool warnings. We analyzed approximately 4% of the tool warnings. We selected the
warnings for analysis randomly and based on findings by security experts. Several teams
improved their tools based on their SATE experience.

Communication with developers of the test cases improved the accuracy of our analysis
and resulted in fixes to the software. Reanalysis, completed after the SATE workshop,
further improved the analysis quality.

The released data is useful in several ways. First, the output from running many tools on
production software is available for empirical research. Second, our analysis of tool
reports indicates weaknesses that exist in the software and that are reported by the tools.
The analysis may also be used as a basis for a further study of the weaknesses in the code
and of static analysis.

SATE data suggests that while tools often look for different types of weaknesses and the
number of warnings varies widely by tool, there is a higher degree of overlap among
tools for well known weakness categories, such as buffer errors.

As part of SATE 2009, we selected tool warnings related to findings by security experts.
Tools reported related warnings for 5 of 10 manual findings in Roller and for 2 of 3
manual findings in IRSSI. While human analysis is best for some types of weaknesses,
such as authorization issues, tools find weaknesses in many important weakness
categories and can quickly identify and describe in detail many weakness instances.

Due to complexity of the task and limited resources, our analysis of the tool reports is
imperfect. For this and other reasons, our analysis must not be used as a direct source for
rating or choosing tools or even in making a decision whether or not to use tools.

5 Future Plans
For the next SATE, analysis of tool reports must be improved. First, while having four
correctness categories instead of two helped, analysis of significance was time-
consuming and error-prone. Therefore, the set of correctness categories needs to be
updated. Second, while analysis criteria were improved since SATE 2008, the criteria
need to be clarified further. Third, a large number of tool warnings and lack of the
ground truth made analysis very difficult. In SATE 2009, we partially addressed this
problem by selecting a random subset of tool warnings for analysis and also selecting tool
warnings related to findings by security experts. We are considering other ways of
removing uncertainty in analysis, in particular, selecting source code with publicly
reported security vulnerabilities.

6 Acknowledgements
Bill Pugh came up with the idea of SATE. SATE is modeled on the NIST Text Retrieval
Conference (TREC): http://trec.nist.gov/. We thank Romain Gaucher for help with
planning SATE 2009. David Lindsay and Romain Gaucher of Cigital are the security
experts that quickly and accurately performed human analysis of the test cases. We thank
Drew Buttner and Steve Christey of MITRE, Charline Cleraux, Lingda Tang, and
Michael Koo of NIST for playing an important role in the analysis of tool reports. We
thank other members of the NIST SAMATE team for their help during all phases of the
exposition. In particular, Michael Kass helped organize the SATE workshop, and Will

NIST SP 500-287 - 28 -

Guthrie helped develop the method for randomly selecting tool warnings for analysis.
Chris Johnson reviewed the paper and provided many insightful comments and
suggestions for its improvement. We especially thank those from participating teams –
Tucker Taft, Maty Siman, Paul Anderson, Fletcher Hirtle, Andy Chou, Peter Henriksen,
Benson Wu, Stephen Liu, Michael Su, Alen Zukich, Gwyn Fisher, Todd Landry, John
Greenland, Nat Hillary, and Chris Wysopal - for their effort, valuable input, and courage.

7 References
[1] Accelerating Open Source Quality, http://scan.coverity.com/
[2] Chains and Composites, The MITRE Corporation,

http://cwe.mitre.org/data/reports/chains_and_composites.html
[3] Common Weakness Enumeration, The MITRE Corporation, http://cwe.mitre.org/
[4] Emanuelsson, Par, and Ulf Nilsson, A Comparative Study of Industrial Static Analysis

Tools (Extended Version), Linkoping University, Technical report 2008:3, 2008.
[5] Frye, C., Klocwork static analysis tool proves its worth, finds bugs in open source

projects, SearchSoftwareQuality.com, June 2006.
[6] Java Open Review Project, Fortify Software, http://opensource.fortifysoftware.com/
[7] Johns, Martin, Moritz Jodeit, Wolfgang Koeppl and Martin Wimmer, Scanstud -

Evaluating Static Analysis Tools, OWASP Europe 2008.
[8] Kratkiewicz, K., and Lippmann, R., Using a Diagnostic Corpus of C Programs to

Evaluate Buffer Overflow Detection by Static Analysis Tools, In Workshop on the
Evaluation of Software Defect Tools, 2005.

[9] Lindsay, David and Romain Gaucher, Threat Modeling and Manual Assessment,
Presentation, Static Analysis Tool Exposition (SATE 2009) Workshop, Arlington, VA,
Nov 6, 2009.

[10] Livshits, Benjamin, Stanford SecuriBench, http://suif.stanford.edu/~livshits/securibench/
[11] Michaud, F., and R. Carbone, Practical verification & safeguard tools for C/C++, DRDC

Canada – Valcartier, TR 2006-735, 2007.
[12] Rutar, N., C. B. Almazan and J. S. Foster, A Comparison of Bug Finding Tools for Java,

15th IEEE Int. Symp. on Software Reliability Eng. (ISSRE'04), France, Nov 2004.
[13] SAMATE project, https://samate.nist.gov/
[14] SAMATE Reference Dataset (SRD), http://samate.nist.gov/SRD/
[15] SANS/CWE Top 25 Most Dangerous Programming Errors, http://cwe.mitre.org/top25/
[16] Source Code Security Analysis Tool Functional Specification Version 1.0, NIST Special

Publication 500-268. May 2007, http://samate.nist.gov/docs/source_code_
security_analysis_spec_SP500-268.pdf

[17] Static Analysis Tool Exposition (SATE), http://samate.nist.gov/SATE.html
[18] Static Analysis Tool Exposition (SATE) 2008, NIST Special Publication 500-279, June

2009, Vadim Okun, Romain Gaucher, and Paul E. Black, editors.
[19] Static Analysis Tool Exposition (SATE 2009) Workshop, Co-located with 11th semi-

annual Software Assurance Forum, Arlington, VA, Nov 6, 2009,
http://samate.nist.gov/SATE2009Workshop.html

[20] Tsipenyuk, K., B. Chess, and G. McGraw, “Seven Pernicious Kingdoms: A Taxonomy of
Software Security Errors,” to be published in Proc. NIST Workshop on Software Security
Assurance Tools, Techniques, and Metrics (SSATTM), US Nat’l Inst. Standards and
Technology, 2005.

[21] Wheeler, David A., SLOCCount, http://www.dwheeler.com/sloccount/

NIST SP 500-287 - 29 -

[22] Zheng, J., L. Williams, N. Nagappan, W. Snipes, J. P. Hudepohl, and M. Vouk, On the
Value of Static Analysis for Fault Detection in Software, IEEE Trans. on Software
Engineering, v. 32, n. 4, Apr. 2006.

[23] Zitser, M., Lippmann, R., Leek, T., Testing Static Analysis Tools using Exploitable
Buffer Overflows from Open Source Code. In SIGSOFT Software Engineering Notes,
29(6):97-106, ACM Press, New York (2004).

	1 Introduction
	2 SATE Organization
	2.1 Steps in the SATE procedure
	2.2 Test Sets
	2.3 Tools
	2.4 Tool Runs and Submissions
	2.5 Analysis of Tool Reports
	2.5.1 Two Methods for Tool Warning Selection
	2.5.2 Practical Analysis Aids
	2.5.3 Analysis Procedure
	2.5.4 Analysis Criteria
	2.5.5 Reanalysis
	2.6 SATE Data Format
	2.6.1 Tool Output Format
	2.6.2 Evaluated Tool Output Format
	2.6.3 Manual Findings Analysis Format
	2.6.4 Association List Format
	2.7 Summary of changes since SATE 2008
	3 Data and Observations
	3.1 Warning Categories
	3.2 Test Case and Tool Properties
	3.3 On our Analysis of Tool Warnings
	3.4 Summary of Reanalysis
	3.5 Tool Warnings Related to Manual Findings
	4 Summary and Conclusions
	5 Future Plans
	6 Acknowledgements
	7 References

